论文标题

使用动态加权Dijkstra的算法和交通预测的车辆路线计划

Vehicle Route Planning using Dynamically Weighted Dijkstra's Algorithm with Traffic Prediction

论文作者

Udhan, Piyush, Ganeshkar, Akhilesh, Murugesan, Poobigan, Permani, Abhishek Raj, Sanjeeva, Sameep, Deshpande, Parth

论文摘要

传统的车辆路由算法不考虑交通的变化。尽管存在具有不同权重的Dijkstra算法的实现,但在执行算法的结果后,权重通常会更改,这可能并不总是会导致选择最佳路由。因此,本文提出了一种新型的车辆路由算法,该算法使用基于道路网络中的交通流量的交通预测模型来改进Dijkstra的算法。在这里,Dijkstra的算法适应了在计划阶段本身期间使用交通流量理论原理的动态和时间依赖性。该模型在每次瞬间提供了预测的流量参数,并在路线网络的每个边缘上提供了旅行时间,从而提供了更好的路由结果。此处提出的动态算法预测,在计划的每个时间步骤中,交通状况的变化可以提供最佳的前瞻性路径。通过将其与传统的Dijkstra的算法进行比较,可以通过随机模拟流量进行比较,并证明该算法可以通过将其与常规Dijkstra的算法进行比较,并显示出随着不断变化的流量而更好地预测最佳路线。

Traditional vehicle routing algorithms do not consider the changing nature of traffic. While implementations of Dijkstra's algorithm with varying weights exist, the weights are often changed after the outcome of algorithm is executed, which may not always result in the optimal route being chosen. Hence, this paper proposes a novel vehicle routing algorithm that improves upon Dijkstra's algorithm using a traffic prediction model based on the traffic flow in a road network. Here, Dijkstra's algorithm is adapted to be dynamic and time dependent using traffic flow theory principles during the planning stage itself. The model provides predicted traffic parameters and travel time across each edge of the road network at every time instant, leading to better routing results. The dynamic algorithm proposed here predicts changes in traffic conditions at each time step of planning to give the optimal forward-looking path. The proposed algorithm is verified by comparing it with conventional Dijkstra's algorithm on a graph with randomly simulated traffic, and is shown to predict the optimal route better with continuously changing traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源