论文标题
扩展Agassi模型的数字量子仿真:使用机器学习来解开其相对图
Digital quantum simulation of an extended Agassi model: Using machine learning to disentangle its phase-diagram
论文作者
论文摘要
使用带有八个捕获的离子的量子平台提出了用于扩展Agassi模型的数字量子模拟。扩展的Agassi模型是一个可解析的模型,包括短范围配对和远距离单豆单泊核的相互作用与核物理和其他多体系统中的应用。此外,它拥有具有不同阶段的丰富相图和相应的相变表面。这项工作的目的是双重的:一方面,在被困离子设施的当前范围内提出对模型的量子模拟,另一方面,另一方面,展示了如何在量子模拟的顶部使用机器学习算法以准确地确定系统的相位。关于量子模拟,该建议可扩展到较大的Agassi系统的多项式资源。机器学习辅助的核物理模型的数字量子模拟可能使人们在确定核物质基本方面的最快经典计算机。
A digital quantum simulation for the extended Agassi model is proposed using a quantum platform with eight trapped ions. The extended Agassi model is an analytically solvable model including both short range pairing and long range monopole-monopole interactions with applications in nuclear physics and in other many-body systems. In addition, it owns a rich phase diagram with different phases and the corresponding phase transition surfaces. The aim of this work is twofold: on one hand, to propose a quantum simulation of the model at the present limits of the trapped ions facilities and, on the other hand, to show how to use a machine learning algorithm on top of the quantum simulation to accurately determine the phase of the system. Concerning the quantum simulation, this proposal is scalable with polynomial resources to larger Agassi systems. Digital quantum simulations of nuclear physics models assisted by machine learning may enable one to outperform the fastest classical computers in determining fundamental aspects of nuclear matter.