论文标题

挑战者:归因地图培训

CHALLENGER: Training with Attribution Maps

论文作者

Tomani, Christian, Cremers, Daniel

论文摘要

我们表明,利用归因图来训练神经网络可以改善模型的正则化,从而提高性能。正则化是深度学习的关键,尤其是在相对较小的数据集上训练复杂模型时。为了了解神经网络的内部工作,已经对属性方法(例如层相关性传播(LRP))进行了广泛的研究,特别是用于解释输入特征的相关性。我们介绍了Challenger,该模块利用归因地图的可解释能力来操纵特别相关的输入模式。因此,将歧义性的歧义区域的区域的区域揭露并随后解决地面数据歧管上的类别分开的区域,这是在相当小的数据集中培训模型时出现的问题。我们的Challenger模块通过在网络中构建更多多样化的过滤器来提高模型性能,并可以应用于任何输入数据域。我们证明,我们的方法可以在数据集上提供更好的分类以及校准性能,其中只有几个样本到具有数千个样本的数据集。特别是,我们表明,我们的通用领域无关的方法产生了最先进的方法,从而导致视觉,自然语言处理和时间序列任务。

We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance. Regularization is key in deep learning, especially when training complex models on relatively small datasets. In order to understand inner workings of neural networks, attribution methods such as Layer-wise Relevance Propagation (LRP) have been extensively studied, particularly for interpreting the relevance of input features. We introduce Challenger, a module that leverages the explainable power of attribution maps in order to manipulate particularly relevant input patterns. Therefore, exposing and subsequently resolving regions of ambiguity towards separating classes on the ground-truth data manifold, an issue that arises particularly when training models on rather small datasets. Our Challenger module increases model performance through building more diverse filters within the network and can be applied to any input data domain. We demonstrate that our approach results in substantially better classification as well as calibration performance on datasets with only a few samples up to datasets with thousands of samples. In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源