论文标题

对齐然后融合:广义的大规模多视图聚类与锚匹配的对应关系

Align then Fusion: Generalized Large-scale Multi-view Clustering with Anchor Matching Correspondences

论文作者

Wang, Siwei, Liu, Xinwang, Liu, Suyuan, Jin, Jiaqi, Tu, Wenxuan, Zhu, Xinzhong, Zhu, En

论文摘要

多视图锚图群集聚类选择代表性锚以避免完整的成对相似性,从而降低了图方法的复杂性。尽管在大规模应用中广泛应用,但现有方法并未充分注意在跨视图之间建立正确的对应关系。具体而言,从不同视图获得的锚图不会对准柱。这样的\ textbf {a} nChor- \ textbf {u} naligned \ textbf {p} roblem(aup)会导致不准确的图形融合并降低群集性能。在多视图方案下,由于锚在特征维度不一致,因此生成正确的对应关系可能非常困难。为了解决这个具有挑战性的问题,我们提出了所谓的普遍且灵活的锚图融合框架的首次研究,称为\ textbf {f} ast \ textbf {m} ulti- \ textbf {v} iew \ textbf {具体而言,我们展示了如何使用特征和结构信息找到锚点对应关系,之后将锚图融合列表执行列。此外,我们从理论上显示了FMVACC与现有多视图晚期Fusion \ cite {liu2018late}与部分视图clustering \ cite \ cite {huang20202020-partallonicaly}之间的连接,这进一步证明了我们的一般性。在七个基准数据集上进行的广泛实验证明了我们提出的方法的有效性和效率。此外,提出的对齐模块还显示出明显的性能改进,适用于现有的多视锚图竞争者,表明锚定对齐的重要性。我们的代码可在\ url {https://github.com/wangsiwei2010/neurips22-fmvacc}获得。

Multi-view anchor graph clustering selects representative anchors to avoid full pair-wise similarities and therefore reduce the complexity of graph methods. Although widely applied in large-scale applications, existing approaches do not pay sufficient attention to establishing correct correspondences between the anchor sets across views. To be specific, anchor graphs obtained from different views are not aligned column-wisely. Such an \textbf{A}nchor-\textbf{U}naligned \textbf{P}roblem (AUP) would cause inaccurate graph fusion and degrade the clustering performance. Under multi-view scenarios, generating correct correspondences could be extremely difficult since anchors are not consistent in feature dimensions. To solve this challenging issue, we propose the first study of the generalized and flexible anchor graph fusion framework termed \textbf{F}ast \textbf{M}ulti-\textbf{V}iew \textbf{A}nchor-\textbf{C}orrespondence \textbf{C}lustering (FMVACC). Specifically, we show how to find anchor correspondence with both feature and structure information, after which anchor graph fusion is performed column-wisely. Moreover, we theoretically show the connection between FMVACC and existing multi-view late fusion \cite{liu2018late} and partial view-aligned clustering \cite{huang2020partially}, which further demonstrates our generality. Extensive experiments on seven benchmark datasets demonstrate the effectiveness and efficiency of our proposed method. Moreover, the proposed alignment module also shows significant performance improvement applying to existing multi-view anchor graph competitors indicating the importance of anchor alignment. Our code is available at \url{https://github.com/wangsiwei2010/NeurIPS22-FMVACC}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源