论文标题
在双与牙套上
On bi-skew braces and brace blocks
论文作者
论文摘要
L. N. Childs将双态支撑定义为偏斜的支撑,因此,如果我们交换了这两个操作的角色,那么我们再次找到了一个偏斜的支撑。 在本文中,我们对双态牙套进行系统分析。我们研究了尼尔疗和溶解度,以及双与牙套之间的连接和阳式 - 巴克斯特方程的固定理论解决方案。此外,在BI-Skew Braces的情况下,我们处理了Byott的猜想,并使用BI-Skew Braces作为解决L. vendramin提出的分类问题的工具。 在最后一部分中,我们调查了A. Koch定义为给定集中的小组操作家族的支架块,以使其中的任何两个产生双态支撑。我们提供了支撑块的特征,说明了文学中所有已知的构造如何从我们的特征中以自然的方式遵循,并给出了几个新示例。
L. N. Childs defined a bi-skew brace to be a skew brace such that if we swap the role of the two operations, then we find again a skew brace. In this paper, we give a systematic analysis of bi-skew braces. We study nilpotency and solubility, and connections between bi-skew braces and set-theoretic solutions of the Yang--Baxter equation. Further, we deal with Byott's conjecture in the case of bi-skew braces, and we use bi-skew braces as a tool to solve a classification problem proposed by L. Vendramin. In the final part, we investigate brace blocks, defined by A. Koch to be families of group operations on a given set such that any two of them yield a bi-skew brace. We provide a characterisation of brace blocks, illustrate how all known constructions in literature follow in a natural way from our characterisation, and give several new examples.