论文标题

将图形嵌入Grassmann歧管上

Embedding Graphs on Grassmann Manifold

论文作者

Zhou, Bingxin, Zheng, Xuebin, Wang, Yu Guang, Li, Ming, Gao, Junbin

论文摘要

学习有效的图表表示是有利地解决图形上下游任务的关键,例如节点或图形属性预测。考虑到图的非欧亚人结构属性,在嵌入式空间中保留原始图数据的相似性关系需要特定的工具和相似性度量。本文开发了一种新的图表学习方案,即鸡蛋,该方案将近似的二阶图形嵌入到Grassmann歧管中。提出的策略利用图形卷积来学习图形相应子空间的隐藏表示,然后通过截断的奇异值分解(SVD)映射到低维歧管的Grassmann点。已建立的图形嵌入近似值的节点属性相关性,如以对称矩阵空间的形式实现的欧几里得计算。使用在节点级别和图形水平上的聚类和分类任务来证明鸡蛋的有效性。它的表现优于各种基准的基线模型。

Learning efficient graph representation is the key to favorably addressing downstream tasks on graphs, such as node or graph property prediction. Given the non-Euclidean structural property of graphs, preserving the original graph data's similarity relationship in the embedded space needs specific tools and a similarity metric. This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold. The proposed strategy leverages graph convolutions to learn hidden representations of the corresponding subspace of the graph, which is then mapped to a Grassmann point of a low dimensional manifold through truncated singular value decomposition (SVD). The established graph embedding approximates denoised correlationship of node attributes, as implemented in the form of a symmetric matrix space for Euclidean calculation. The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level. It outperforms baseline models on various benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源