论文标题

2D时间反转不变超导体的约瑟夫森连接:拓扑阶段的签名

Josephson junctions of 2D time-reversal invariant superconductors: signatures of the topological phase

论文作者

Ruiz, Gabriel F. Rodríguez, Rampp, Michael A., Aligia, A. A., Schmalian, Joerg, Arrachea, Liliana

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We determine the current-phase relation (CPR) of two-terminal configurations of Josephson junctions containing two-dimensional (2D) time-reversal invariant topological superconductors (TRITOPS), including TRITOPS-TRITOPS, as well as junctions between topological and non-topological superconductors (TRITOPS-S). We focus on long junctions for which several channels intervene in the tunneling coupling through the junction. We present a description of the topological edge modes for different TRITOPS models including $p$-wave pairing and the combination of $s$-wave pairing with spin-orbit coupling. We derive effective low-energy Hamiltonians to describe the Josephson junction, which can be solved analytically to explain the contribution of the edge states to the Josephson current as a function of the phase bias. We find that edge-modes yield singular corrections to the CPR for both junction types. The primary effects occur for the response of the Majorana zero-modes at half-flux quantum phase $ϕ\approx π$ in TRITOPS-TRITOPS junctions and for integer flux quantum phase $ϕ\approx 0$ for TRITOPS-S junctions, respectively. The former effect is particularly strong two-component nematic superconductors. The latter effect leads to a spontaneously broken time-reversal symmetry in the TRITOPS-S junction and to a breakdown of the bulk-boundary correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源