论文标题

同盟学习:与分散的边缘服务器联合学习

Confederated Learning: Federated Learning with Decentralized Edge Servers

论文作者

Wang, Bin, Fang, Jun, Li, Hongbin, Yuan, Xiaojun, Ling, Qing

论文摘要

联合学习(FL)是一种新兴的机器学习范式,可以完成模型培训,而无需在中央服务器上汇总数据。大多数关于FL的研究都考虑了一个集中式框架,其中单个服务器赋予了中央权威,以协调许多设备以迭代方式进行模型培训。由于严格的通信和带宽约束,随着设备数量的增长,这种集中式框架的可扩展性有限。为了解决这个问题,在本文中,我们提出了一个同盟学习(CFL)框架。提出的CFL由多个服务器组成,其中每个服务器都与传统的FL框架一样,将每个服务器与单个设备集连接,并且在服务器之间利用了分散的协作,以充分利用整个网络中分散的数据。我们为CFL开发了乘数(ADMM)算法的交替方向方法。提出的算法采用随机调度策略,随机选择一部分设备以在每次迭代中访问其各自的服务器,从而减轻了将大量信息从设备上传到服务器的需求。提出了理论分析以证明所提出的方法是合理的。数值结果表明,所提出的方法可以比基于梯度的FL算法更快地收敛到体面的解决方案,从而在通信效率方面具有很大的优势。

Federated learning (FL) is an emerging machine learning paradigm that allows to accomplish model training without aggregating data at a central server. Most studies on FL consider a centralized framework, in which a single server is endowed with a central authority to coordinate a number of devices to perform model training in an iterative manner. Due to stringent communication and bandwidth constraints, such a centralized framework has limited scalability as the number of devices grows. To address this issue, in this paper, we propose a ConFederated Learning (CFL) framework. The proposed CFL consists of multiple servers, in which each server is connected with an individual set of devices as in the conventional FL framework, and decentralized collaboration is leveraged among servers to make full use of the data dispersed throughout the network. We develop an alternating direction method of multipliers (ADMM) algorithm for CFL. The proposed algorithm employs a random scheduling policy which randomly selects a subset of devices to access their respective servers at each iteration, thus alleviating the need of uploading a huge amount of information from devices to servers. Theoretical analysis is presented to justify the proposed method. Numerical results show that the proposed method can converge to a decent solution significantly faster than gradient-based FL algorithms, thus boasting a substantial advantage in terms of communication efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源