论文标题
FRAUG:通过代表增强来解决具有非IID功能的联合学习
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation
论文作者
论文摘要
联邦学习(FL)是一个分散的学习范式,其中多个客户在不集中其本地数据的情况下进行培训深度学习模型,因此保留数据隐私。现实世界中的应用程序通常涉及在不同客户端的数据集上进行分配变化,这损害了客户从各自的数据分布中看不见样本的概括能力。在这项工作中,我们解决了最近提出的功能转换问题,其中客户具有不同的功能分布,而标签分布相同。我们建议联邦代表性扩大(FRAUG)来解决这个实用且具有挑战性的问题。我们的方法在嵌入空间中生成合成客户端特定的样本,以增加通常小客户端数据集。为此,我们训练共享的生成模型,以融合客户从其不同功能分布中学习的知识。该发电机合成了客户端不合时宜的嵌入,然后通过表示转换网络(RTNETS)将其局部转换为特定于客户端的嵌入。通过将知识转移到客户端,生成的嵌入式是客户模型的常规器,并减少对本地原始数据集的过度拟合,从而改善了概括。我们对公共基准和现实医学数据集的经验评估证明了该方法的有效性,该方法在包括Partialfed和FedBn在内的非IID特征的当前最新FL方法大大优于最新的FL方法。
Federated Learning (FL) is a decentralized learning paradigm, in which multiple clients collaboratively train deep learning models without centralizing their local data, and hence preserve data privacy. Real-world applications usually involve a distribution shift across the datasets of the different clients, which hurts the generalization ability of the clients to unseen samples from their respective data distributions. In this work, we address the recently proposed feature shift problem where the clients have different feature distributions, while the label distribution is the same. We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem. Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets. For that, we train a shared generative model to fuse the clients knowledge learned from their different feature distributions. This generator synthesizes client-agnostic embeddings, which are then locally transformed into client-specific embeddings by Representation Transformation Networks (RTNets). By transferring knowledge across the clients, the generated embeddings act as a regularizer for the client models and reduce overfitting to the local original datasets, hence improving generalization. Our empirical evaluation on public benchmarks and a real-world medical dataset demonstrates the effectiveness of the proposed method, which substantially outperforms the current state-of-the-art FL methods for non-IID features, including PartialFed and FedBN.