论文标题

神经形状交配:具有对抗性先验的自我监督的对象组件

Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors

论文作者

Chen, Yun-Chun, Li, Haoda, Turpin, Dylan, Jacobson, Alec, Garg, Animesh

论文摘要

学习自主组装形状是许多机器人应用的重要技能。尽管大多数现有零件组装方法都集中在正确摆姿势的语义部分以重新创建整个对象,但我们更加字面地将组装解释为:将几何部分交配在一起以实现贴合。通过专注于形状对准而不是语义提示,我们可以实现跨类别的概括。在本文中,我们介绍了一项新的任务,成对的3D几何形状交配,并提出神经形状交配(NSM)来解决此问题。鉴于未知类别的两个对象部分的点云,NSM学会了对两个部分的拟合进行推理,并预测一对3D姿势将它们紧密地搭配在一起。我们将NSM的训练与隐式形状重建任务相结合,以使NSM更强大,从而使点云观测到不完善。为了培训NSM,我们提出了一个自我监督的数据收集管道,该管道通过将对象网格随机切成两个部分,从而生成成对的与地面真理的交配数据,从而产生了一个数据集,该数据集由来自众多对象网格的200k形状交配对,这些对象是与多样的切割类型的。我们在收集的数据集上训练NSM,并将其与多个点云注册方法和一个部分组装基线进行比较。在各种环境下进行的广泛的实验结果和消融研究表明了所提出的算法的有效性。其他材料 可在以下网址找到:https://neural-shape-mating.github.io/

Learning to autonomously assemble shapes is a crucial skill for many robotic applications. While the majority of existing part assembly methods focus on correctly posing semantic parts to recreate a whole object, we interpret assembly more literally: as mating geometric parts together to achieve a snug fit. By focusing on shape alignment rather than semantic cues, we can achieve across-category generalization. In this paper, we introduce a novel task, pairwise 3D geometric shape mating, and propose Neural Shape Mating (NSM) to tackle this problem. Given the point clouds of two object parts of an unknown category, NSM learns to reason about the fit of the two parts and predict a pair of 3D poses that tightly mate them together. We couple the training of NSM with an implicit shape reconstruction task to make NSM more robust to imperfect point cloud observations. To train NSM, we present a self-supervised data collection pipeline that generates pairwise shape mating data with ground truth by randomly cutting an object mesh into two parts, resulting in a dataset that consists of 200K shape mating pairs from numerous object meshes with diverse cut types. We train NSM on the collected dataset and compare it with several point cloud registration methods and one part assembly baseline. Extensive experimental results and ablation studies under various settings demonstrate the effectiveness of the proposed algorithm. Additional material is available at: https://neural-shape-mating.github.io/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源