论文标题
四阶schrödinger方程的谎言对称分类和定性分析
Lie symmetry classification and qualitative analysis for the fourth-order Schrödinger equation
论文作者
论文摘要
用于研究最小长度下的变形代数修改的启发的$ 1+n〜 $四阶方程的研究谎言对称分析。具体而言,我们对存在非平凡的谎言对称性并简化Schrödinger方程的标量场电位函数进行详细的分类。然后,定性分析允许分析降低的普通微分方程,以了解渐近动力学。
The Lie symmetry analysis for the study of a $1+n~$fourth-order Schrödinger equation inspired by the modification of the deformation algebra in the presence of a minimum length is applied. Specifically, we perform a detailed classification for the scalar field potential function where non-trivial Lie symmetries exist and simplify the Schrödinger equation. Then, a qualitative analysis allows for the reduced ordinary differential equation to be analyzed to understand the asymptotic dynamics.