论文标题
缓存的批量批量重新采样用于培训推荐猎犬
Cache-Augmented Inbatch Importance Resampling for Training Recommender Retriever
论文作者
论文摘要
当用户查询请求时,推荐回收者的目的是快速从整个项目语料库中检索一小部分项目,而代表性的两位塔模型则接受了log softmax损失的训练。为了有效地对现代硬件进行培训推荐猎犬,在零头抽样中,在小批次中的项目被共享为否定性以估计软效果的功能,因此越来越兴趣。但是,现有的基于Incatch采样的策略只是纠正具有项目频率的Incatch项目的采样偏差,无法区分迷你批次内的用户查询,并且仍会引起与SoftMax的显着偏见。在本文中,我们提出了一个用于培训推荐回收者的缓存插分重新采样(XIR),该培训不仅对使用Incatch项目的用户查询提供了不同的负面影响,而且还可以自适应地实现更准确的软性估计。具体来说,XIR根据某些概率为给定的迷你批次培训对重新示例物品,其中采用了更频繁采样项目的缓存来增强候选项目集,以重用历史信息示例。 XIR能够根据批次项目进行样本取决于查询的负面因素,并捕获模型训练的动态变化,从而可以更好地近似软效果,并进一步有助于更好地收敛。最后,我们进行实验,以验证与竞争方法相比,提出的XIR的出色性能。
Recommender retrievers aim to rapidly retrieve a fraction of items from the entire item corpus when a user query requests, with the representative two-tower model trained with the log softmax loss. For efficiently training recommender retrievers on modern hardwares, inbatch sampling, where the items in the mini-batch are shared as negatives to estimate the softmax function, has attained growing interest. However, existing inbatch sampling based strategies just correct the sampling bias of inbatch items with item frequency, being unable to distinguish the user queries within the mini-batch and still incurring significant bias from the softmax. In this paper, we propose a Cache-Augmented Inbatch Importance Resampling (XIR) for training recommender retrievers, which not only offers different negatives to user queries with inbatch items, but also adaptively achieves a more accurate estimation of the softmax distribution. Specifically, XIR resamples items for the given mini-batch training pairs based on certain probabilities, where a cache with more frequently sampled items is adopted to augment the candidate item set, with the purpose of reusing the historical informative samples. XIR enables to sample query-dependent negatives based on inbatch items and to capture dynamic changes of model training, which leads to a better approximation of the softmax and further contributes to better convergence. Finally, we conduct experiments to validate the superior performance of the proposed XIR compared with competitive approaches.