论文标题

暴露脸部反欺骗模型的细粒度对抗脆弱性

Exposing Fine-Grained Adversarial Vulnerability of Face Anti-Spoofing Models

论文作者

Yang, Songlin, Wang, Wei, Xu, Chenye, He, Ziwen, Peng, Bo, Dong, Jing

论文摘要

面部反欺骗旨在区分现场表演的欺骗面部图像(例如,印刷照片)。但是,对抗性示例极大地挑战了其信誉,在其中增加一些扰动噪声可以轻松改变预测。先前的工作进行了对抗性攻击方法,以评估面部反欺骗性能,而没有任何细粒度分析,哪些模型架构或辅助特征很容易受到对手的影响。为了解决这个问题,我们提出了一个新颖的框架,以揭示面部反欺骗模型的细粒度对抗脆弱性,该模型由多任务模块和语义特征增强(SFA)模块组成。多任务模块可以获得不同的语义特征以进行进一步评估,但是只有攻击这些语义特征才能反映与歧视相关的漏洞。然后,我们设计了SFA模块,以在与歧视相关的梯度方向上引入数据分布,以生成对抗性示例。综合实验表明,SFA模块平均将攻击成功率提高了近40美元。我们对不同注释,几何图和骨干网络(例如,重新网络)进行了这种细粒的对抗分析。这些细粒的对抗示例可用于选择稳健的骨干网络和辅助特征。它们还可以用于对抗训练,这使得进一步提高面部反欺骗模型的准确性和鲁棒性是实用的。

Face anti-spoofing aims to discriminate the spoofing face images (e.g., printed photos) from live ones. However, adversarial examples greatly challenge its credibility, where adding some perturbation noise can easily change the predictions. Previous works conducted adversarial attack methods to evaluate the face anti-spoofing performance without any fine-grained analysis that which model architecture or auxiliary feature is vulnerable to the adversary. To handle this problem, we propose a novel framework to expose the fine-grained adversarial vulnerability of the face anti-spoofing models, which consists of a multitask module and a semantic feature augmentation (SFA) module. The multitask module can obtain different semantic features for further evaluation, but only attacking these semantic features fails to reflect the discrimination-related vulnerability. We then design the SFA module to introduce the data distribution prior for more discrimination-related gradient directions for generating adversarial examples. Comprehensive experiments show that SFA module increases the attack success rate by nearly 40$\%$ on average. We conduct this fine-grained adversarial analysis on different annotations, geometric maps, and backbone networks (e.g., Resnet network). These fine-grained adversarial examples can be used for selecting robust backbone networks and auxiliary features. They also can be used for adversarial training, which makes it practical to further improve the accuracy and robustness of the face anti-spoofing models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源