论文标题
使用实际空间密度功能理论计算的预计种群分析的大型系统中的化学键合计算
Chemical bonding in large systems using projected population analysis from real-space density functional theory calculations
论文作者
论文摘要
我们提出了一种有效且可扩展的计算方法,用于从基于真实空间有限元(FE)的Kohn-Sham密度功能理论计算(DFT-FE)进行预测的人群分析。这项工作为从涉及数千原子的材料系统中提取化学键合信息提供了一个重要方向,同时适应了定期,半周期或完全非周期性的边界条件。为此,我们得出相关的数学表达式,并开发有效的数值实现过程,这些程序可在多节点CPU体系结构上进行扩展,以计算投影的重叠和汉密尔顿人群。人口分析是通过将自偏融合的FE离散化的Kohn-Sham轨道或FE离散的Hamiltonian投影到由以局部原子为中心的基础集跨越的子空间上来完成的。所提出的方法是在DFT-FE代码中的统一框架中实施的,在DFT-FE代码中,地面DFT计算和人口分析是在同一FE网格上进行的。我们进一步基准了这种方法在涉及定期和非周期性DFT计算的代表性材料系统上的准确性和性能,该系统是龙虾(一种广泛使用的投影人口分析法规)。最后,我们讨论了一项案例研究,证明了我们可扩展方法的优势,以提取与碳合金的大硅纳米颗粒中的氢化学键合信息,这是碳储存的候选材料。
We present an efficient and scalable computational approach for conducting projected population analysis from real-space finite-element (FE) based Kohn-Sham density functional theory calculations (DFT-FE). This work provides an important direction towards extracting chemical bonding information from large-scale DFT calculations on materials systems involving thousands of atoms while accommodating periodic, semi-periodic or fully non-periodic boundary conditions. Towards this, we derive the relevant mathematical expressions and develop efficient numerical implementation procedures that are scalable on multi-node CPU architectures to compute the projected overlap and Hamilton populations. The population analysis is accomplished by projecting either the self-consistently converged FE discretized Kohn-Sham orbitals, or the FE discretized Hamiltonian onto a subspace spanned by a localized atom-centred basis set. The proposed methods are implemented in a unified framework within DFT-FE code where the ground-state DFT calculations and the population analysis are performed on the same FE grid. We further benchmark the accuracy and performance of this approach on representative material systems involving periodic and non-periodic DFT calculations with LOBSTER, a widely used projected population analysis code. Finally, we discuss a case study demonstrating the advantages of our scalable approach to extract the quantitative chemical bonding information of hydrogen chemisorbed in large silicon nanoparticles alloyed with carbon, a candidate material for hydrogen storage.