论文标题
自旋转移扭矩,自旋泵送和波动的量子散射理论
Quantum Scattering Theory of Spin Transfer Torque, Spin Pumping and Fluctuations
论文作者
论文摘要
自旋转移扭矩和自旋泵送是旋转三位型中的中央倒数现象。这些现象发生在正常金属和磁铁的混合系统中。自旋转移是金属中的自旋电流转换为磁铁磁化磁化强度的扭矩。自旋泵送是从进攻磁体中发出的自旋电流。在这里,我们展示了一种在量子外径流模型模型中理解这些效果的一般方法。我们的结果与没有波动时在横向(混合)电导方面的自旋转移和自旋泵的已知表达式一致。但是,在有限的温度,频率或自旋积累下,磁铁还会发生波动的扭矩。在经典状态下,当热能大于偏置电压和进动频率时,我们将重现与自旋转移和自旋泵送相关的经典的布朗尼 - 朗格文vin力。在低温下,在量子状态下,我们证明了弹性和非弹性电子传输状态的磁化波动有所不同。此外,我们展示了如何除混合电导率之外的其他运输系数如何控制波动。这些系数中的一些与电子射击噪声有关,因为电子的离散旋转角动量。我们估计清洁,隧道和无序连接处的波动系数以及绝缘磁铁的情况。我们的结果为探索低温磁化动力学和旋转热量量子学开辟了道路。
Spin transfer torque and spin pumping are central reciprocal phenomena in spintronics. These phenomena occur in hybrid systems of normal metals and magnets. Spin transfer is the conversion of spin currents in metals to a torque on the magnetization of magnets. Spin pumping is the emission of spin currents from precessing magnets. Here, we demonstrate a general way to understand these effects within a quantum out-of-equilibrium path-integral model. Our results agree with known expressions for spin transfer and spin pumping in terms of transverse (mixing) conductances when there are no fluctuations. However, at a finite temperature, frequency or spin accumulation, the magnet also experiences fluctuating torques. In the classical regime, when the thermal energy is larger than the bias voltage and precession frequency, we reproduce the classical Brownian-Langevin forces associated with spin transfer and spin pumping. At low temperatures, in the quantum regime, we demonstrate that magnetization fluctuations differ in the elastic and inelastic electron transport regimes. Furthermore, we show how additional transport coefficients beyond the mixing conductance govern the fluctuations. Some of these coefficients are related to electron shot noise because of the discrete spin angular momentum of electrons. We estimate the fluctuation coefficients of clean, tunnel, and disordered junctions and in the case of an insulating magnet. Our results open a path for exploring low-temperature magnetization dynamics and spin caloritronics.