论文标题

Minidisc:语言模型压缩的最小蒸馏时间表

MiniDisc: Minimal Distillation Schedule for Language Model Compression

论文作者

Zhang, Chen, Yang, Yang, Wang, Qifan, Liu, Jiahao, Wang, Jingang, Wu, Wei, Song, Dawei

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent studies have uncovered that language model distillation is less effective when facing a large capacity gap between the teacher and the student, and introduced teacher assistant-based distillation to bridge the gap. As a connection, the scale and the performance of the teacher assistant is of vital importance to bring the knowledge from the teacher to the student. However, existing teacher assistant-based methods require maximally many trials before scheduling an optimal teacher assistant. To this end, we propose a minimal distillation schedule (MiniDisc) for scheduling the optimal teacher assistant in minimally one trial. In particular, motivated by the finding that the performance of the student is positively correlated to the scale-performance tradeoff of the teacher assistant, MiniDisc is designed with a $λ$-tradeoff to measure the optimality of the teacher assistant without trial distillation to the student. MiniDisc then can schedule the optimal teacher assistant with the best $λ$-tradeoff in a sandwich framework. MiniDisc is evaluated with an extensive set of experiments on GLUE. Experimental results demonstrate the improved efficiency our MiniDisc compared to several state-of-the-art baselines. We further apply MiniDisc to a language model with billions of parameters and show its scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源