论文标题

进行实例校准:局部摊销诊断和有条件密度的重塑(LADAR)

Towards Instance-Wise Calibration: Local Amortized Diagnostics and Reshaping of Conditional Densities (LADaR)

论文作者

Dey, Biprateep, Zhao, David, Andrews, Brett H., Newman, Jeffrey A., Izbicki, Rafael, Lee, Ann B.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Key science questions, such as galaxy distance and weather forecasting, often require knowing the full predictive distribution of a target variable $y$ given complex inputs $\mathbf{x}$. Despite recent advances in machine learning and physics-based models, it remains challenging to assess whether an initial model is calibrated for all $\mathbf{x}$, and when needed, to reshape the densities of $y$ toward "instance-wise" calibration. This paper introduces the LADaR (Local Amortized Diagnostics and Reshaping of Conditional Densities) framework and proposes a new computationally efficient algorithm ($\texttt{Cal-PIT}$) that produces interpretable local diagnostics and provides a mechanism for adjusting conditional density estimates (CDEs). $\texttt{Cal-PIT}$ learns a single interpretable local probability--probability (optimal transport) map from calibration data that identifies where and how the initial model is miscalibrated across feature space, which can be used to morph CDEs such that they are well-calibrated. We illustrate the LADaR framework on synthetic examples, including probabilistic forecasting from image sequences, akin to predicting storm wind speed from satellite imagery. Our main science application involves estimating the probability density functions of galaxy distances given photometric data, where $\texttt{Cal-PIT}$ achieves better instance-wise calibration than all 11 other literature methods in a benchmark data challenge, demonstrating its utility for next-generation cosmological analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源