论文标题

差异私人协方差重新审视

Differentially Private Covariance Revisited

论文作者

Dong, Wei, Liang, Yuting, Yi, Ke

论文摘要

在本文中,我们提出了两种在集中差异隐私(ZCDP)下进行协方差估计的新算法。第一个算法达到了$ \ tilde {o}(d^{1/4} \ sqrt {\ sqrt {\ mathrm {tr}}/\ sqrt {n} + \ sqrt {d}/n)$,其中$ \ mathrm matr a covar的frobenius错误。通过服用$ \ mathrm {tr} = 1 $,这也意味着$ \ tilde {o}(d^{1/4}/\ sqrt {n})$的最差案例错误绑定,可改善标准高斯机械师的$ \ tilde {o} $(d/n)$ $ d> \widetildeΩ(n^{2/3})$。我们的第二个算法提供了一种对尾敏感的界限,在偏斜的数据上可能会更好。相应的算法也很简单有效。实验结果表明,它们对先前的工作提供了重大改进。

In this paper, we present two new algorithms for covariance estimation under concentrated differential privacy (zCDP). The first algorithm achieves a Frobenius error of $\tilde{O}(d^{1/4}\sqrt{\mathrm{tr}}/\sqrt{n} + \sqrt{d}/n)$, where $\mathrm{tr}$ is the trace of the covariance matrix. By taking $\mathrm{tr}=1$, this also implies a worst-case error bound of $\tilde{O}(d^{1/4}/\sqrt{n})$, which improves the standard Gaussian mechanism's $\tilde{O}(d/n)$ for the regime $d>\widetildeΩ(n^{2/3})$. Our second algorithm offers a tail-sensitive bound that could be much better on skewed data. The corresponding algorithms are also simple and efficient. Experimental results show that they offer significant improvements over prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源