论文标题
检查背景对相对论重离子碰撞中光核产量比的影响
Examination of background effects on light-nuclei yield ratio in relativistic heavy-ion collisions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The light-nuclei yield ratio is one of the candidates to probe the critical fluctuations of hot QCD matter. In this paper, we investigate the \textit{background effects}, namely the non-critical effects coming from the non-trivial thermal background, on the light-nuclei production within the framework of the coalescence model. Specifically, we analyze the impact of the equilibrium phase-space distribution function of nucleons, $f(\mathbf{r},\mathbf{p})$, on the light-nuclei yield ratio $N_tN_p/N_d^2$, where $N_t$, $N_p$, and $N_d$ denote triton, proton, and deuteron yields. By considering the characteristic function of the phase-space distribution, we systematically expand the yield of light nuclei of $A$-constituent nucleons, $N_A$, in terms of the \textit{phase-space cumulants}, $\langle\mathbf{r}^n\mathbf{p}^m\rangle_c$. We find that the cumulants up to the second-order are canceled out in the generalized ratio $N_p^{B-A} N_B^{A-1}/N_A^{B-1}$. This means that the dominant background effects including the fireball size, the kinetic freeze-out temperature, and the coordinate--momentum correlations caused by the radial expansion play an insignificant role in the yield ratio, which supports the yield ratio as a useful tool for the critical-point search. We also show several examples of background phase-space distributions for the qualitative illustration. The higher-order cumulants, which correspond to the non-Gaussian shape of the phase-space profile, play an important role in the variation of the yield ratio particularly for the smaller fireball sizes. Qualitatively, the spatial structure of the background decreases the yield ratio, and the azimuthal anisotropy $v_n$ increases it. The higher order of the azimuthal anisotropy causes a larger effect on the yield ratio. These results call for the comprehensive future studies of the yield ratio using sophisticated dynamical models.