论文标题

使用范围测量值的最佳多机器人地层进行相对姿势估计

Optimal Multi-robot Formations for Relative Pose Estimation Using Range Measurements

论文作者

Cossette, Charles Champagne, Shalaby, Mohammed Ayman, Saussie, David, Ny, Jerome Le, Forbes, James Richard

论文摘要

在多机器人任务中,代理之间的相对位置和态度信息对于诸如映射,计划和编队控制等各种任务都是有价值的。在本文中,研究了从一组代理范围测量值中估计相对姿势的问题。具体而言,据表明,估计精度高度取决于真实的相对构成本身,这促使人们希望找到提供最佳估计性能的多代理形成。通过对Fischer信息的直接最大化,在模拟和实验中显示,可以通过优化机器人团队的形成几何形状来获得估计精度的巨大提高。

In multi-robot missions, relative position and attitude information between agents is valuable for a variety of tasks such as mapping, planning, and formation control. In this paper, the problem of estimating relative poses from a set of inter-agent range measurements is investigated. Specifically, it is shown that the estimation accuracy is highly dependent on the true relative poses themselves, which prompts the desire to find multi-agent formations that provide the best estimation performance. By direct maximization of Fischer information, it is shown in simulation and experiment that large improvements in estimation accuracy can be obtained by optimizing the formation geometry of a team of robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源