论文标题

嵌入式DG可压缩流量模拟的稳定,熵兼容的兼容亚音线边界条件

Stable, entropy-pressure compatible subsonic Riemann boundary condition for embedded DG compressible flow simulations

论文作者

Lyu, Ganlin, Chen, Chao, Du, Xi, Sherwin, Spencer J.

论文摘要

降低模拟过渡性压缩边界层流量成本的一种方法是采用一个近乎身体的域,其边界条件与计算上便宜的3D RANS模拟相兼容。在这种方法中,希望强制执行一致的压力分布,而使用标准的Riemann流入边界条件时通常不会发生这种压力分布。我们重新审查了许多基于DG的高保真配方中采用的Riemann问题。通过分析1D线性化的Euler方程,可以证明,保持与RANS模拟的熵兼容性对于稳定的解决方案很重要。在流出处维持Riemann不变性会留下一种可以在流入处施加的条件。因此,熵压力执行是实施已知压力分布的唯一稳定边界条件。我们进一步证明,所有熵兼容的流入riemann边界条件都是稳定的,只要尊重不变的Riemann流出边界条件。尽管距离1D分析的熵压力兼容的Riemann流入边界条件是稳定的,但2D测试突出了Inviscid问题中的差异和速度模拟中速度模拟中中性稳定的Wiggles的差异。关于非均匀基流假设的2D分析提供了对该稳定性问题(不适合性)的见解,并激发了在流动区域中流入边界条件的混合使用。作为验证,我们将提出的边界条件应用于正态的翼部截面的降低域,该域是从0.86马赫的完整3D模拟中取出的CRM-NLF模型的前沿,雷诺数为850万。结果表明,熵兼容的Riemann流入边界条件导致压力分布有良好的一致性。

One approach to reduce the cost to simulate transitional compressible boundary layer flow is to adopt a near body reduced domain with boundary conditions enforced to be compatible with a computationally cheaper 3D RANS simulation. In such an approach it is desirable to enforce a consistent pressure distribution which is not typically the case when using the standard Riemann inflow boundary condition. We revisit the Riemann problem adopted in many DG based high fidelity formulations. Through analysis of the 1D linearised Euler equations it is demonstrated that maintaining entropy compatibility with the RANS simulation is important for a stable solution. The maintenance of Riemann invariant at outflow leaves one condition that can be imposed at the inflow. Therefore the entropy-pressure enforcement is the only stable boundary condition to enforce a known pressure distribution. We further demonstrate that all the entropy compatible inflow Riemann boundary conditions are stable providing the invariant compatible Riemann outflow boundary condition is also respected. Although the entropy-pressure compatible Riemann inflow boundary condition is stable from the 1D analysis, 2D tests highlight divergence in the inviscid problem and neutrally stable wiggles in the velocity fields in viscous simulations around the stagnation point. A 2D analysis about a non-uniform baseflow assumption provides insight into this stability issue (ill-posedness) and motivate the use of a mix of inflow boundary conditions in this region of the flow. As a validation we apply the proposed boundary conditions to a reduced domain of a wing section normal to the leading-edge of the CRM-NLF model taken out of a full 3D RANS simulation at Mach 0.86 and a Reynolds number of 8.5 million. The results show that the entropy-pressure compatible Riemann inflow boundary condition leads to a good agreement in pressure distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源