论文标题

FedControl:当控制理论符合联合学习时

FedControl: When Control Theory Meets Federated Learning

论文作者

Mansour, Adnan Ben, Carenini, Gaia, Duplessis, Alexandre, Naccache, David

论文摘要

迄今为止,最受欢迎的联邦学习算法使用模型参数的坐标为平均。根据本地学习的表现及其发展,我们通过区分客户的贡献来偏离这种方法。该技术的灵感来自控制理论,其分类性能在IID框架中进行了广泛的评估,并与FedAvg进行了比较。

To date, the most popular federated learning algorithms use coordinate-wise averaging of the model parameters. We depart from this approach by differentiating client contributions according to the performance of local learning and its evolution. The technique is inspired from control theory and its classification performance is evaluated extensively in IID framework and compared with FedAvg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源