论文标题
可控制的文本生成具有神经化的甲骨文
Controllable Text Generation with Neurally-Decomposed Oracle
论文作者
论文摘要
我们提出了一个通用和高效的框架,以使用神经化的甲骨文(NADO)来控制自动回归生成模型。给定预先训练的基本语言模型和一个序列级布尔甲骨文功能,我们建议将Oracle函数分解为令牌级别的指导,以在文本生成中引导基本模型。具体而言,令牌级的指导是通过训练基础模型取样的示例的神经模型来近似的,要求不需要其他辅助标记的数据。基于后正则化,我们提出了封闭形式的最佳解决方案,将令牌级的指导纳入可控生成的基础模型中。我们进一步提供了理论分析,说明NADO的近似质量如何影响可控的生成结果。对两种应用进行的实验:(1)具有词汇约束的文本生成和(2)具有形式控制的机器翻译表明,我们的框架有效地将基本模型指向给定的Oracle,同时保持高生成质量。
We propose a general and efficient framework to control auto-regressive generation models with NeurAlly-Decomposed Oracle (NADO). Given a pre-trained base language model and a sequence-level boolean oracle function, we propose to decompose the oracle function into token-level guidance to steer the base model in text generation. Specifically, the token-level guidance is approximated by a neural model trained with examples sampled from the base model, demanding no additional auxiliary labeled data. Based on posterior regularization, we present the closed-form optimal solution to incorporate the token-level guidance into the base model for controllable generation. We further provide a theoretical analysis of how the approximation quality of NADO affects the controllable generation results. Experiments conducted on two applications: (1) text generation with lexical constraints and (2) machine translation with formality control demonstrate that our framework efficiently guides the base model towards the given oracle while maintaining high generation quality.