论文标题

在粘弹性中学习马尔可夫匀浆模型

Learning Markovian Homogenized Models in Viscoelasticity

论文作者

Bhattacharya, Kaushik, Liu, Burigede, Stuart, Andrew M., Trautner, Margaret

论文摘要

具有快速变化的特征的材料的完全解决动力学涉及昂贵的精细计算,这些计算需要在宏观尺度上进行。均质化理论提供了一种得出有效的宏观方程的方法,该方法通过利用尺度分离来消除小尺度。准确的均质模型避免了以数值稳定的计算型任务,即以数值来解决基础平衡法则,从而使平衡定律的数值解决方案更具计算方法。 在复杂的设置中,同质化仅隐含地定义了本构模型,并且可以使用机器学习来从局部的细尺度模拟中明确学习本构模型。在一维粘弹性的情况下,模型的线性允许进行完整的分析。我们确定可以通过捕获记忆的复发性神经网络(RNN)近似均质的组成模型。记忆封装在通过学习过程中发现的适当有限内部变量的演变中,并取决于菌株的历史。提出了验证理论的模拟。通过类似的技术来学习更复杂模型的指导,例如在可塑性中出现的指导。

Fully resolving dynamics of materials with rapidly-varying features involves expensive fine-scale computations which need to be conducted on macroscopic scales. The theory of homogenization provides an approach to derive effective macroscopic equations which eliminates the small scales by exploiting scale separation. An accurate homogenized model avoids the computationally-expensive task of numerically solving the underlying balance laws at a fine scale, thereby rendering a numerical solution of the balance laws more computationally tractable. In complex settings, homogenization only defines the constitutive model implicitly, and machine learning can be used to learn the constitutive model explicitly from localized fine-scale simulations. In the case of one-dimensional viscoelasticity, the linearity of the model allows for a complete analysis. We establish that the homogenized constitutive model may be approximated by a recurrent neural network (RNN) that captures the memory. The memory is encapsulated in the evolution of an appropriate finite set of internal variables, discovered through the learning process and dependent on the history of the strain. Simulations are presented which validate the theory. Guidance for the learning of more complex models, such as arise in plasticity, by similar techniques, is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源