论文标题

循环突变:通过循环诱导进化的排列

Cycle Mutation: Evolving Permutations via Cycle Induction

论文作者

Cicirello, Vincent A.

论文摘要

进化算法通过模拟候选解决方案的演变来解决问题。我们专注于订购问题等问题,例如旅行销售人员问题(TSP),以及分配问题,例如二次分配问题(QAP)和最大的常见子学(LCS)。我们提出了循环突变,这是一种新的突变操作员,其灵感是众所周知的循环跨界操作员,也是置换周期的概念。我们使用健身景观分析来探索哪种周期突变最有效的问题特征。作为先决条件,我们制定了新的排列距离度量:循环距离,$ K $ -Cycle距离和循环编辑距离。健身景观分析预测,与订购问题相比,周期突变更适合分配和映射问题。我们通过实验验证了这些发现,显示了循环突变在QAP和LCS等问题上的优势,及其对TSP等问题的局限性,同时也表明它比常用的替代方案不易局部Optima。我们将循环突变集成到开源芯片-N-SALSA库中,新的距离指标纳入开源Javapermouttontools库中。

Evolutionary algorithms solve problems by simulating the evolution of a population of candidate solutions. We focus on evolving permutations for ordering problems like the traveling salesperson problem (TSP), as well as assignment problems like the quadratic assignment problem (QAP) and largest common subgraph (LCS). We propose cycle mutation, a new mutation operator whose inspiration is the well known cycle crossover operator, and the concept of a permutation cycle. We use fitness landscape analysis to explore the problem characteristics for which cycle mutation works best. As a prerequisite, we develop new permutation distance measures: cycle distance, $k$-cycle distance, and cycle edit distance. The fitness landscape analysis predicts that cycle mutation is better suited for assignment and mapping problems than it is for ordering problems. We experimentally validate these findings showing cycle mutation's strengths on problems like QAP and LCS, and its limitations on problems like the TSP, while also showing that it is less prone to local optima than commonly used alternatives. We integrate cycle mutation into the open-source Chips-n-Salsa library, and the new distance metrics into the open-source JavaPermutationTools library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源