论文标题

小组级的大脑对深度学习进行解码

Group-level Brain Decoding with Deep Learning

论文作者

Csaky, Richard, Van Es, Mats, Jones, Oiwi Parker, Woolrich, Mark

论文摘要

解码大脑成像数据在脑部计算机界面和神经表示研究中的应用都变得越来越流行。解码通常是特定于主体的,并且由于受试者的变异性之间的含量很高,因此不能很好地概括主体。克服这一点的技术不仅将神经科学洞察力,而且还可以使小组级模型能够超过特定于主题的模型。在这里,我们提出了一种使用主题安装的方法,该方法类似于自然语言处理中的单词嵌入,学习并利用受试者间可变性中的结构作为解码模型的一部分,我们对WaveNet架构进行分类的适应。我们将其应用于MAGNETOCHATHARGHOCHY数据,其中15位受试者查看了118个不同的图像,每个图像有30个示例;使用整个1 S窗口后图表进行分类。我们表明,深度学习和主题培训的结合对于缩小受试者和组级解码模型之间的性能差距至关重要。重要的是,小组模型的表现优于主体模型,临界受试者(尽管略有损害了高准确性受试者),并且可以为初始化的主题模型而辩解。虽然我们通常没有找到比主题级模型更好的群体级别模型,但使用较大的数据集的组建模的性能将更高。为了在小组级别提供植物学解释,我们利用置换功能功能率。这提供了对模型中的时空和光谱信息的见解。所有代码均可在GitHub(https://github.com/ricsinaruto/meg-group-decode)上找到。

Decoding brain imaging data are gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typicallysubject-specific and does not generalise well over subjects, due to high amounts ofbetween subject variability. Techniques that overcome this will not only providericher neuroscientific insights but also make it possible for group-level models to out-perform subject-specific models. Here, we propose a method that uses subjectembedding, analogous to word embedding in natural language processing, to learnand exploit the structure in between-subject variability as part of a decoding model,our adaptation of the WaveNet architecture for classification. We apply this to mag-netoencephalography data, where 15 subjects viewed 118 different images, with30 examples per image; to classify images using the entire 1 s window followingimage presentation. We show that the combination of deep learning and subjectembedding is crucial to closing the performance gap between subject- and group-level decoding models. Importantly, group models outperform subject models onlow-accuracy subjects (although slightly impair high-accuracy subjects) and can behelpful for initialising subject models. While we have not generally found group-levelmodels to perform better than subject-level models, the performance of groupmodelling is expected to be even higher with bigger datasets. In order to providephysiological interpretation at the group level, we make use of permutation featureimportance. This provides insights into the spatiotemporal and spectral informationencoded in the models. All code is available on GitHub (https://github.com/ricsinaruto/MEG-group-decode).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源