论文标题

在$ f(\ MATHCAL {r})$ GRAVITY的框架中探测ZTF Casimir虫洞的存在

Probing the existence of the ZTF Casimir wormholes in the framework of $f(\mathcal{R})$ gravity

论文作者

Sokoliuk, Oleksii, Baransky, Alexander, Sahoo, P. K.

论文摘要

对于球形对称的静态旋转虫洞,在$ f(\ Mathcal {r})= \ Mathcal {r}+α\ Mathcal {r}^2 $ quadratic的$ f(\ nathcal {r})= \ Mathcal {r}虫洞溶液的能量条件和动力稳定性。尤其是,我们研究零潮汐力(ZTF)Casimir WH,喉咙上的各向异性流体。通过使用CASIMIR能量密度和改良的爱因斯坦磁场方程(EFE),我们为考虑的每个修饰的重力得出了合适的形状函数。在我们的论文中还通过改良的Tolman-Oppenheemer-Voklov(MTOV)方程分析了Casimir可穿越的蠕虫孔在不同的重力理论中的稳定性。此外,由于非保守的应激能量张量,我们还具有数值求解的MTOV和衍生的流体动力学,各向异性和额外力。此外,得出了其他基本量,例如体积积分量词和总重力能。

For the spherically symmetric static traversable wormholes, supported by the Casimir energy in $f(\mathcal{R})=\mathcal{R}+α\mathcal{R}^2$ Quadratic, $f(\mathcal{R})=f_0 \mathcal{R}^n$ power-law Modified Gravity (MOG) theories we investigate energy conditions and dynamical stability of the wormhole solutions. Especially, we study Zero Tidal Forces (ZTF) Casimir WH's with anisotropic fluid located at the throat. By using the Casimir energy density and modified Einstein Field Equations (EFE's) we derived suitable shape functions for each modified gravity of our consideration. The stability of Casimir traversable wormholes in different modified gravity theories is also analyzed in our paper with a modified Tolman-Oppenheimer-Voklov (MTOV) equation. Besides, we have numerically solved MTOV and derived hydrodynamical, anisotropic and extra forces, that is present due to the non-conserved stress-energy tensor. Moreover, other fundamental quantities, such as Volume Integral Quantifier and total gravitational energy were derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源