论文标题

作为一项服务的进化:合并优化的保存隐私的遗传算法

Evolution as a Service: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization

论文作者

Zhao, Bowen, Chen, Wei-Neng, Wei, Feng-Feng, Liu, Ximeng, Pei, Qingqi, Zhang, Jun

论文摘要

进化算法(EAS),例如遗传算法(GA),提供了一种优雅的方法来处理组合优化问题(COPS)。但是,受专业知识和资源的限制,大多数用户没有足够的能力来实施EA来解决COPS。直观而有前途的解决方案是将进化操作外包给云服务器,同时遇到了隐私问题。为此,本文提出了一种新颖的计算范式,即进化为服务(EAAS),其中云服务器为用户提供了进化计算服务而无需牺牲用户的隐私。受EAA的想法的启发,这篇论文设计了Pega,这是一种新颖的保护警察GA。具体而言,PEGA使用户可以将警察外包到拥有竞争性GA的云服务器,并以隐私保护方式近似最佳解决方案。 PEGA具有以下特征。首先,任何没有专业知识和足够资源的用户都可以解决她的警察。其次,PEGA不会泄漏优化问题的内容,即用户的隐私。第三,PEGA具有与常规GA相同的功能,可以近似最佳解决方案。我们将PEGA落入双层服务器架构中,并在旅行推销员问题(TSP,众所周知的COP)中进行评估。特别是,我们利用加密密码学来保护用户的隐私,并仔细设计安全的计算协议的诉讼,以支持GA的进化运算符在加密数据上。隐私分析表明,PEGA不会向云服务器披露COP的内容。四个TSP数据集的实验评估结果表明,PEGA在近似最佳解决方案方面与常规GA一样有效。

Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users do not have enough capability to implement EAs to solve COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, whilst it suffers from privacy concerns. To this end, this paper proposes a novel computing paradigm, evolution as a service (EaaS), where a cloud server renders evolutionary computation services for users without sacrificing users' privacy. Inspired by the idea of EaaS, this paper designs PEGA, a novel privacy-preserving GA for COPs. Specifically, PEGA enables users outsourcing COPs to the cloud server holding a competitive GA and approximating the optimal solution in a privacy-preserving manner. PEGA features the following characteristics. First, any user without expertise and enough resources can solve her COPs. Second, PEGA does not leak contents of optimization problems, i.e., users' privacy. Third, PEGA has the same capability as the conventional GA to approximate the optimal solution. We implements PEGA falling in a twin-server architecture and evaluates it in the traveling salesman problem (TSP, a widely known COP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suit of secure computing protocols to support evolutionary operators of GA on encrypted data. Privacy analysis demonstrates that PEGA does not disclose the contents of the COP to the cloud server. Experimental evaluation results on four TSP datasets show that PEGA is as effective as the conventional GA in approximating the optimal solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源