论文标题

时空图与跨城市知识转移的少量图形学习

Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge Transfer

论文作者

Lu, Bin, Gan, Xiaoying, Zhang, Weinan, Yao, Huaxiu, Fu, Luoyi, Wang, Xinbing

论文摘要

时空图学习是城市计算任务的关键方法,例如交通流量,出租车需求和空气质量预测。由于数据收集成本很高,一些发展中的城市几乎没有可用的数据,这使得训练良好的模型是不可行的。为了应对这一挑战,跨城市知识转移表明了其承诺,从数据填充的城市中学到的模型则可以利用数据筛选城市的学习过程。但是,不同城市之间的时空图显示了不规则的结构和多种特征,从而限制了现有的几次学习(\ emph {fsl})方法的可行性。因此,我们为时空图(称为st-gfsl)提出了一个模型不合时宜的学习框架。具体而言,为了通过转移跨城知识来增强特征提取,ST-GFSL建议基于节点级元知识生成非共享参数。目标城市中的节点通过参数匹配传递知识,从相似的时空特征中检索。此外,我们建议在元学习过程中重建图形结构。图形重建损失被定义为指导结构感知学习,避免了不同数据集之间的结构偏差。我们对四个交通速度预测基准进行了全面的实验,结果证明了与最新方法相比,ST-GFSL的有效性。

Spatio-temporal graph learning is a key method for urban computing tasks, such as traffic flow, taxi demand and air quality forecasting. Due to the high cost of data collection, some developing cities have few available data, which makes it infeasible to train a well-performed model. To address this challenge, cross-city knowledge transfer has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities. However, the spatio-temporal graphs among different cities show irregular structures and varied features, which limits the feasibility of existing Few-Shot Learning (\emph{FSL}) methods. Therefore, we propose a model-agnostic few-shot learning framework for spatio-temporal graph called ST-GFSL. Specifically, to enhance feature extraction by transfering cross-city knowledge, ST-GFSL proposes to generate non-shared parameters based on node-level meta knowledge. The nodes in target city transfer the knowledge via parameter matching, retrieving from similar spatio-temporal characteristics. Furthermore, we propose to reconstruct the graph structure during meta-learning. The graph reconstruction loss is defined to guide structure-aware learning, avoiding structure deviation among different datasets. We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源