论文标题

奶油:通过类重新激活映射弱监督的对象定位

CREAM: Weakly Supervised Object Localization via Class RE-Activation Mapping

论文作者

Xu, Jilan, Hou, Junlin, Zhang, Yuejie, Feng, Rui, Zhao, Rui-Wei, Zhang, Tao, Lu, Xuequan, Gao, Shang

论文摘要

弱监督的对象本地化(WSOL)旨在通过图像级监督定位对象。现有作品主要依赖于从分类模型得出的类激活映射(CAM)。但是,基于CAM的方法通常集中在对象的最歧视部分(即不完整的本地化问题)。在本文中,我们从经验上证明,这个问题与较小的歧视性前景区域和背景之间的激活值的混合有关。为了解决这个问题,我们提出了类重新激活映射(Cream),这是一种基于聚类的新方法,以增强积分对象区域的激活值。为此,我们将特定于类的前景和背景上下文嵌入作为群集质心。制定了CAM指导的动量保存策略,以学习训练期间的上下文嵌入。在推论阶段,在高斯混合模型下,重新激活映射被公式化为参数估计问题,可以通过得出基于无监督的预期最大化的软簇算法来求解。通过简单地将奶油整合到各种WSOL方法中,我们的方法可显着提高其性能。 Cream在CUB,ILSVRC和OpenImages基准数据集上实现了最先进的性能。代码将在https://github.com/jazzcharles/cream上找到。

Weakly Supervised Object Localization (WSOL) aims to localize objects with image-level supervision. Existing works mainly rely on Class Activation Mapping (CAM) derived from a classification model. However, CAM-based methods usually focus on the most discriminative parts of an object (i.e., incomplete localization problem). In this paper, we empirically prove that this problem is associated with the mixup of the activation values between less discriminative foreground regions and the background. To address it, we propose Class RE-Activation Mapping (CREAM), a novel clustering-based approach to boost the activation values of the integral object regions. To this end, we introduce class-specific foreground and background context embeddings as cluster centroids. A CAM-guided momentum preservation strategy is developed to learn the context embeddings during training. At the inference stage, the re-activation mapping is formulated as a parameter estimation problem under Gaussian Mixture Model, which can be solved by deriving an unsupervised Expectation-Maximization based soft-clustering algorithm. By simply integrating CREAM into various WSOL approaches, our method significantly improves their performance. CREAM achieves the state-of-the-art performance on CUB, ILSVRC and OpenImages benchmark datasets. Code will be available at https://github.com/Jazzcharles/CREAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源