论文标题

伪杂项,用于有效的概率偏好学习

Pseudo-Mallows for Efficient Probabilistic Preference Learning

论文作者

Liu, Qinghua, Vitelli, Valeria, Mannino, Carlo, Frigessi, Arnoldo, Scheel, Ida

论文摘要

我们在所有$ n $项目的所有排列集合上提出了伪马洛的分布,以近似摩洛斯的可能性近似后验分布。事实证明,Mallows模型对于推荐系统很有用,在这些系统中,它可用于从用户提供的高度不完整数据中学习个人偏好。但是,基于MCMC的推论很慢,可以阻止其在实时应用中使用。伪马洛分布是单变量离散的类似槌锤的分布的产物,被限制在排列空间中。近似值的质量取决于用于确定分数序列的$ n $项目的顺序。在变异环境中,我们通过最小化边缘化的kl差异来优化变分顺序参数。我们为此离散优化提出了一种近似算法,并猜想了一种取决于数据的最佳变异顺序的某种形式。经验证据和一些理论支持我们的猜想。与基于替代MCMC的选项相比,从伪马洛分布中的采样可以快速偏好学习,当数据以项目的部分排名形式存在或单击某些项目时。通过仿真和现实生活数据案例研究,我们证明了伪马洛模型可以很好地学习个人偏好,并更有效地提出建议,同时与确切的贝叶斯锤摩尔模型相比保持了相似的准确性。

We propose the Pseudo-Mallows distribution over the set of all permutations of $n$ items, to approximate the posterior distribution with a Mallows likelihood. The Mallows model has been proven to be useful for recommender systems where it can be used to learn personal preferences from highly incomplete data provided by the users. Inference based on MCMC is however slow, preventing its use in real time applications. The Pseudo-Mallows distribution is a product of univariate discrete Mallows-like distributions, constrained to remain in the space of permutations. The quality of the approximation depends on the order of the $n$ items used to determine the factorization sequence. In a variational setting, we optimise the variational order parameter by minimising a marginalized KL-divergence. We propose an approximate algorithm for this discrete optimization, and conjecture a certain form of the optimal variational order that depends on the data. Empirical evidence and some theory support our conjecture. Sampling from the Pseudo-Mallows distribution allows fast preference learning, compared to alternative MCMC based options, when the data exists in form of partial rankings of the items or of clicking on some items. Through simulations and a real life data case study, we demonstrate that the Pseudo-Mallows model learns personal preferences very well and makes recommendations much more efficiently, while maintaining similar accuracy compared to the exact Bayesian Mallows model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源