论文标题
从属代数作为输入/输出逻辑的语义环境
Subordination Algebras as Semantic Environment of Input/Output Logic
论文作者
论文摘要
我们在非古典逻辑中的两个研究领域之间建立了一种新颖的联系,到目前为止,已经独立于彼此开发的:一方面,一方面,输入/输出逻辑,在研究计划中引入了哲学逻辑和AI中规范性推理的逻辑形式化;另一方面,在模态逻辑语义的研究中,在研究计划中进行了研究计划的下属代数。具体而言,我们建议可以将输入/输出逻辑的基本框架及其扩展构成对(轻微概括)从属代数的正式语义。这种解释的存在为这两个研究领域带来了好处:一方面,这种联系允许对从属代数作为数学模型和规范行为的数学模型进行新颖的概念理解;另一方面,由于下属代数与模态逻辑之间有着良好的联系,可以为输入/输出逻辑中的输出操作员作为模态操作员提供新的正式表示形式,其属性可以用合适的语言明确地进行,并通过数学上建立和功能强大的工具进行系统地研究。
We establish a novel connection between two research areas in non-classical logics which have been developed independently of each other so far: on the one hand, input/output logic, introduced within a research program developing logical formalizations of normative reasoning in philosophical logic and AI; on the other hand, subordination algebras, investigated in the context of a research program integrating topological, algebraic, and duality-theoretic techniques in the study of the semantics of modal logic. Specifically, we propose that the basic framework of input/output logic, as well as its extensions, can be given formal semantics on (slight generalizations of) subordination algebras. The existence of this interpretation brings benefits to both research areas: on the one hand, this connection allows for a novel conceptual understanding of subordination algebras as mathematical models of the properties and behaviour of norms; on the other hand, thanks to the well developed connection between subordination algebras and modal logic, the output operators in input/output logic can be given a new formal representation as modal operators, whose properties can be explicitly axiomatised in a suitable language, and be systematically studied by means of mathematically established and powerful tools.