论文标题
多孔介质中不可混合和不可压缩的两相流的统计力学
A statistical mechanics for immiscible and incompressible two-phase flow in porous media
论文作者
论文摘要
我们基于Jaynes最大熵原理,在局部稳态条件下,在多孔培养基中为多孔介质中的不混溶和不可压缩的两相流动构建了统计力学。群集熵分配给我们缺乏对孔隙空间中流体和流动构型的了解和控制。结果,描述出现流量的两个新变量:描述了两种流体的搅拌水平的AGITURE,以及与饱和度结合的流衍生物。 AGITION和流衍生物是标准(热)统计力学中温度和化学势的类似物。相关的热力学形式主义揭示了描述流动(包括波动)的变量之间的许多未知关系。形式主义为新方法开放,以表征多孔介质在实用应用中的多相流方面,取代了简单的相对渗透理论,同时仍保持可访问的变量数量。
We construct a statistical mechanics for immiscible and incompressible two-phase flow in porous media under local steady-state conditions based on the Jaynes maximum entropy principle. A cluster entropy is assigned to our lack of knowledge of, and control over, the fluid and flow configurations in the pore space. As a consequence, two new variables describing the flow emerge: The agiture, that describes the level of agitation of the two fluids, and the flow derivative which is conjugate to the saturation. Agiture and flow derivative are the analogs of temperature and chemical potential in standard (thermal) statistical mechanics. The associated thermodynamics-like formalism reveals a number of hitherto unknown relations between the variables that describe the flow, including fluctuations. The formalism opens for new approaches to characterize porous media with respect to multi-phase flow for practical applications, replacing the simplistic relative permeability theory while still keeping the number of variables tractable.