论文标题

将聚合物表示为具有学习描述符的周期图,以进行准确的聚合物属性预测

Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions

论文作者

Antoniuk, Evan R., Li, Peggy, Kailkhura, Bhavya, Hiszpanski, Anna M.

论文摘要

利用机器学习来发现创新的新聚合物的巨大挑战之一在于难以准确代表聚合物材料的复杂结构。尽管已经探索了各种手工设计的聚合物表示,但尚未有一个理想的解决方案,用于捕获聚合物结构的周期性,以及如何在不需要人类特征设计的情况下开发聚合物描述符。在这项工作中,我们通过开发定期聚合物图表示来解决这些问题。我们的聚合物性能预测管道由我们的聚合物图表示,该图表自然地解释了聚合物的周期性,然后是一个消息传递的神经网络(MPNN),该神经网络(MPNN)利用图形深度学习的力量自动学习化学相关的聚合物描述符。在10种聚合物特性的不同数据集中,我们发现该聚合物图表示始终优于手工设计的表示,预测误差平均降低了20%。我们的结果说明了通过直接编码周期性将化学直觉纳入我们的聚合物图表示如何导致聚合物属性预测的准确性和可靠性的显着提高。我们还展示了将聚合物图表与消息传递的神经网络体系结构组合在一起,可以自动提取与人类直觉一致的有意义的聚合物特征,同时胜过人类衍生的特征。这项工作强调了预测能力的进步,如果使用专门优化用于捕获聚合物独特化学结构的化学描述符,则可能是可能的。

One of the grand challenges of utilizing machine learning for the discovery of innovative new polymers lies in the difficulty of accurately representing the complex structures of polymeric materials. Although a wide array of hand-designed polymer representations have been explored, there has yet to be an ideal solution for how to capture the periodicity of polymer structures, and how to develop polymer descriptors without the need for human feature design. In this work, we tackle these problems through the development of our periodic polymer graph representation. Our pipeline for polymer property predictions is comprised of our polymer graph representation that naturally accounts for the periodicity of polymers, followed by a message-passing neural network (MPNN) that leverages the power of graph deep learning to automatically learn chemically-relevant polymer descriptors. Across a diverse dataset of 10 polymer properties, we find that this polymer graph representation consistently outperforms hand-designed representations with a 20% average reduction in prediction error. Our results illustrate how the incorporation of chemical intuition through directly encoding periodicity into our polymer graph representation leads to a considerable improvement in the accuracy and reliability of polymer property predictions. We also demonstrate how combining polymer graph representations with message-passing neural network architectures can automatically extract meaningful polymer features that are consistent with human intuition, while outperforming human-derived features. This work highlights the advancement in predictive capability that is possible if using chemical descriptors that are specifically optimized for capturing the unique chemical structure of polymers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源