论文标题
偏微分方程操作员学习的变压器
Transformer for Partial Differential Equations' Operator Learning
论文作者
论文摘要
数据驱动的部分微分方程解决方案运算符最近已成为近似基础解决方案的有希望的范式。解决方案运算符通常由基于特定问题的电感偏见构建的深度学习模型进行参数化。一个示例是卷积或图神经网络,该网络利用了函数值的采样的局部网格结构。另一方面,注意机制提供了一种灵活的方法,可以隐式利用输入中的模式,此外,任意查询位置和输入之间的关系。在这项工作中,我们为数据驱动的操作员学习提供了一个基于注意力的框架,我们将其定为“运算符”(Oformer)。我们的框架是建立在自我注意事务,跨注意事项和一组智慧多层感知(MLP)之上的,因此,它几乎没有对输入函数或查询位置的采样模式做出的假设。我们表明,所提出的框架在标准基准问题上具有竞争力,并且可以灵活地适应随机采样的输入。
Data-driven learning of partial differential equations' solution operators has recently emerged as a promising paradigm for approximating the underlying solutions. The solution operators are usually parameterized by deep learning models that are built upon problem-specific inductive biases. An example is a convolutional or a graph neural network that exploits the local grid structure where functions' values are sampled. The attention mechanism, on the other hand, provides a flexible way to implicitly exploit the patterns within inputs, and furthermore, relationship between arbitrary query locations and inputs. In this work, we present an attention-based framework for data-driven operator learning, which we term Operator Transformer (OFormer). Our framework is built upon self-attention, cross-attention, and a set of point-wise multilayer perceptrons (MLPs), and thus it makes few assumptions on the sampling pattern of the input function or query locations. We show that the proposed framework is competitive on standard benchmark problems and can flexibly be adapted to randomly sampled input.