论文标题
空间可分离的非线性潜在因素学习:躯体体现皮质fMRI数据的应用
Spatio-temporally separable non-linear latent factor learning: an application to somatomotor cortex fMRI data
论文作者
论文摘要
功能磁共振成像(fMRI)数据包含复杂的时空动力学,因此研究人员开发了降低信号尺寸的方法,同时提取相关和可解释的动力学。可以研究可以执行动态潜在因素全脑发现的fMRI数据模型。但是,已广泛理解了诸如线性独立组件分析模型之类的方法的好处,但是,这些模型的非线性扩展在识别方面带来了挑战。深度学习方法提供了前进的方向,但是有效的空间体重分担的新方法对于处理数据的高维度和噪声的存在至关重要。我们的方法通过基于体素之间的结构和功能相似性,首先执行光谱聚类,将重量共享概括为非欧国神经影像学数据。然后,光谱簇及其分配可以用作适应的多层感知器(MLP) - 混合模型中的补丁,以在输入点之间共享参数。为了鼓励时间独立的潜在因素,我们在损失中使用了额外的总相关项。我们的方法对具有多个运动子任务的数据进行了评估,以评估该模型是否捕获了与每个子任务相对应的分离的潜在因素。然后,为了评估我们进一步发现的潜在因素,我们将每个潜在因子的空间位置与运动生物的空间位置进行比较。最后,我们表明我们的方法比当前的源信号分离,独立组件分析(ICA)的黄金标准更好地捕获了任务效果。
Functional magnetic resonance imaging (fMRI) data contain complex spatiotemporal dynamics, thus researchers have developed approaches that reduce the dimensionality of the signal while extracting relevant and interpretable dynamics. Models of fMRI data that can perform whole-brain discovery of dynamical latent factors are understudied. The benefits of approaches such as linear independent component analysis models have been widely appreciated, however, nonlinear extensions of these models present challenges in terms of identification. Deep learning methods provide a way forward, but new methods for efficient spatial weight-sharing are critical to deal with the high dimensionality of the data and the presence of noise. Our approach generalizes weight sharing to non-Euclidean neuroimaging data by first performing spectral clustering based on the structural and functional similarity between voxels. The spectral clusters and their assignments can then be used as patches in an adapted multi-layer perceptron (MLP)-mixer model to share parameters among input points. To encourage temporally independent latent factors, we use an additional total correlation term in the loss. Our approach is evaluated on data with multiple motor sub-tasks to assess whether the model captures disentangled latent factors that correspond to each sub-task. Then, to assess the latent factors we find further, we compare the spatial location of each latent factor to the motor homunculus. Finally, we show that our approach captures task effects better than the current gold standard of source signal separation, independent component analysis (ICA).