论文标题

从基于代理的蒙特卡洛模拟数据中学习黑色和灰色盒化趋化PDE/封闭

Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data

论文作者

Lee, Seungjoon, Psarellis, Yorgos M., Siettos, Constantinos I., Kevrekidis, Ioannis G.

论文摘要

我们提出了一个机器学习框架,用于数据驱动的宏观趋化性部分微分方程(PDE)的发现,以及导致它们的封闭 - 从高保真,基于个体的基于个体的基于个体的随机模拟。精细的量表,详细的,混合的(连续 - 蒙特卡洛)模拟模型体现了潜在的生物物理学,其参数来自对单个细胞的实验观察结果。我们在高斯过程框架内利用自动相关性确定(ARD),以识别一组简约的集体可观察物,该集体可观察到有效PDE的定律。使用这些可观察到的东西,在第二步中,我们学习有效的,粗粒的“凯勒 - 塞格类”趋化性PDE,使用机器学习回归器:(a)(浅)馈电神经网络和(b)高斯过程。当在回归过程中已知方程(例如纯扩散部分)时,学到的定律可以是黑框(当不假定对PDE定律结构的先验知识(例如,纯扩散部分)并且“硬接线”时,就可以是黑框。我们还讨论了分析已知的近似封闭的数据驱动校正(添加剂和功能)。

We propose a machine learning framework for the data-driven discovery of macroscopic chemotactic Partial Differential Equations (PDEs) -- and the closures that lead to them -- from high-fidelity, individual-based stochastic simulations of E.coli bacterial motility. The fine scale, detailed, hybrid (continuum - Monte Carlo) simulation model embodies the underlying biophysics, and its parameters are informed from experimental observations of individual cells. We exploit Automatic Relevance Determination (ARD) within a Gaussian Process framework for the identification of a parsimonious set of collective observables that parametrize the law of the effective PDEs. Using these observables, in a second step we learn effective, coarse-grained "Keller-Segel class" chemotactic PDEs using machine learning regressors: (a) (shallow) feedforward neural networks and (b) Gaussian Processes. The learned laws can be black-box (when no prior knowledge about the PDE law structure is assumed) or gray-box when parts of the equation (e.g. the pure diffusion part) is known and "hardwired" in the regression process. We also discuss data-driven corrections (both additive and functional) of analytically known, approximate closures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源