论文标题

在强磁化等离子体中增强无碰撞激光吸收

Enhanced collisionless laser absorption in strongly magnetized plasmas

论文作者

Manzo, Lili, Edwards, Matthew R., Shi, Yuan

论文摘要

强烈的磁化等离子体增加了不存在的血浆中不存在的一系列波,并扩大了激光 - 血浆相互作用(LPI)景观。在本文中,我们使用粒子中的模拟(PIC)模拟在与磁惯性融合实验相关的条件下,在一个维度上进行了强烈磁化的LPI,重点是电子 - 环境频率大于等离子体频率,并且磁场与波量相对于波量倾斜。我们表明,当类似电子 - 循环的混合波频率约为激光频率的一半时,激光光通过较大生长速率的原发性和二级不稳定性共振到磁化等离子体波。这些独特的磁场控制的不稳定性,我们共同称为两麦克农的衰变,类似于未经磁化等离子体中的两样式衰变。由于倾斜磁场引入了其他相混合机制,因此大幅度磁化波的无碰撞阻尼实质上扩大了电子分布函数,尤其是沿磁场的方向。在此过程中,能量有效地从激光转移到等离子体波,然后再传递到电子,当存在较强的共振时,能量会导致较大的总体吸收性。增强的激光能量吸收可能解释了在磁化激光内爆实验中观察到的高于预期的温度,并且也可能被利用以开发更有效的激光驱动的X射线源。

Strongly magnetizing a plasma adds a range of waves that do not exist in unmagnetized plasmas and enlarges the laser-plasma interaction (LPI) landscape. In this paper, we use particle-in-cell (PIC) simulations to investigate strongly magnetized LPI in one dimension under conditions relevant for magneto-inertial fusion experiments, focusing on a regime where the electron-cyclotron frequency is greater than the plasma frequency and the magnetic field is at an oblique angle with respect to the wave vectors. We show that when electron-cyclotron-like hybrid wave frequency is about half the laser frequency, the laser light resonantly decays to magnetized plasma waves via primary and secondary instabilities with large growth rates. These distinct magnetic-field-controlled instabilities, which we collectively call two-magnon decays, are analogous to two-plasmon decays in unmagnetized plasmas. Since additional phase mixing mechanisms are introduced by the oblique magnetic field, collisionless damping of large-amplitude magnetized waves substantially broadens the electron distribution function, especially along the direction of the magnetic field. During this process, energy is transferred efficiently from the laser to plasma waves and then to electrons, leading to a large overall absorptivity when strong resonances are present. The enhanced laser energy absorption may explain hotter-than-expected temperatures observed in magnetized laser implosion experiments and may also be exploited to develop more efficient laser-driven x-ray sources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源