论文标题

在有限可溶组的群体中的不溶性及物子群上

On Insoluble Transitive Subgroups in the Holomorph of a Finite Soluble Group

论文作者

Byott, Nigel P.

论文摘要

Hopf-Galois理论和偏斜理论中的一个感兴趣问题是,有限可溶组$ n $的Holomorph $ \ Mathrm {hol(n)} $是否可以包含一个不溶性的常规子组。我们研究了一个更普遍的问题,即在$ \ mathrm {hol}(n)$中找到一个不溶性的及物子组$ g $,并使用可溶的点稳定器。如果我们不能通过适当的非无聊的商$ \ Overline {g} $,$ \ overline {n} $ of $ g $,$ n $,以便$ \ overline {g <g} $,我们称之为一对$(g,n)$不可记述。我们对此问题的所有不可约(G,n)$进行了分类,特别表明,每个非亚伯式的成分因子$ g $均为$ g $的$ 168 $ 168 $。此外,$ n $的每个最大正常子组的指数$ 2 $。

A question of interest both in Hopf-Galois theory and in the theory of skew braces is whether the holomorph $\mathrm{Hol(N)}$ of a finite soluble group $N$ can contain an insoluble regular subgroup. We investigate the more general problem of finding an insoluble transitive subgroup $G$ in $\mathrm{Hol}(N)$ with soluble point stabilisers. We call such a pair $(G,N)$ irreducible if we cannot pass to proper non-trivial quotients $\overline{G}$, $\overline{N}$ of $G$, $N$ so that $\overline{G}$ becomes a subgroup of $\mathrm{Hol}(\overline{N})$. We classify all irreducible solutions $(G,N)$ of this problem, showing in particular that every non-abelian composition factor of $G$ is isomorphic to the simple group of order $168$. Moreover, every maximal normal subgroup of $N$ has index $2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源