论文标题

动态签名网络的指数随机图模型:国际关系的应用

Exponential Random Graph Models for Dynamic Signed Networks: An Application to International Relations

论文作者

Fritz, Cornelius, Mehrl, Marius, Thurner, Paul W., kauermann, Göran

论文摘要

社会科学的实质性研究定期调查签名的网络,在该网络中,参与者之间的边缘是正面或负面的。例如,学童可以是朋友或竞争对手,就像国家可以合作或互相战斗一样。这项研究通常基于结构平衡理论,这是最早,最杰出的网络理论之一,使签名的网络成为社交网络分析中最常见的问题之一。虽然签名网络的理论化和描述已经取得了重大进展,但在没有适当的统计模型的情况下,对其中的扎带形成的推论研究仍然有限。在本文中,我们通过提出签名的指数随机图模型(SERGM)来填补这一空白,将众所周知的指数随机图模型(ERGM)扩展到网络,如果存在绑带,则扎带不是二进制的,而是负面或正面的。由于大多数网络都是动态发展的系统,因此我们为横截面和动态网络指定模型。基于从结构平衡理论得出的结构假设,我们制定了可解释的签名网络统计数据,捕获了诸如“我的敌人是我的朋友”之类的动态。在我们的经验应用中,我们使用SERGM来分析国际国家体系中国家之间的合作和冲突。

Substantive research in the Social Sciences regularly investigates signed networks, where edges between actors are either positive or negative. For instance, schoolchildren can be friends or rivals, just as countries can cooperate or fight each other. This research often builds on structural balance theory, one of the earliest and most prominent network theories, making signed networks one of the most frequently studied matters in social network analysis. While the theorization and description of signed networks have thus made significant progress, the inferential study of tie formation within them remains limited in the absence of appropriate statistical models. In this paper we fill this gap by proposing the Signed Exponential Random Graph Model (SERGM), extending the well-known Exponential Random Graph Model (ERGM) to networks where ties are not binary but negative or positive if a tie exists. Since most networks are dynamically evolving systems, we specify the model for both cross-sectional and dynamic networks. Based on structural hypotheses derived from structural balance theory, we formulate interpretable signed network statistics, capturing dynamics such as "the enemy of my enemy is my friend". In our empirical application, we use the SERGM to analyze cooperation and conflict between countries within the international state system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源