论文标题
随机非线性schrödinger方程的奇异结果,具有大阻尼
Ergodic results for the stochastic nonlinear Schrödinger equation with large damping
论文作者
论文摘要
我们使用线性阻尼,即零阶耗散和加性噪声研究非线性Schrödinger方程。在$ r^d $中使用d = 2或d = 3,当阻尼系数足够大时,我们证明了不变度度量的唯一性。
We study the nonlinear Schrödinger equation with linear damping, i.e. a zero order dissipation, and additive noise. Working in $R^d$ with d = 2 or d = 3, we prove the uniqueness of the invariant measure when the damping coefficient is sufficiently large.