论文标题

转移和分享:从长尾数据中的半监督学习

Transfer and Share: Semi-Supervised Learning from Long-Tailed Data

论文作者

Wei, Tong, Liu, Qian-Yu, Shi, Jiang-Xin, Tu, Wei-Wei, Guo, Lan-Zhe

论文摘要

长尾半监督学习(LTSSL)旨在从只有几个样本注释的类别数据中学习。现有的解决方案通常需要大量的成本来解决复杂的优化问题,或者均衡的底层采样,这可能导致信息丢失。在本文中,我们介绍TRA(转移和共享),以有效利用长尾半监督数据。 TRA通过精致的功能改变了传统SSL模型的不平衡伪标签分布,以增强少数群体的监督信号。然后,它将分布转移到目标模型中,以使少数群体将受到极大的关注。有趣的是,TRA表明,更加平衡的伪标签分布可以实质上使少数级培训受益,而不是像以前的工作那样寻求产生准确的伪标签。为了简化该方法,TRA通过共享特征提取器将传统SSL模型和目标模型的培训合并为单个过程,在此过程中,这两个分类器都有助于改善表示表示学习。根据广泛的实验,在整个类别和少数群体中,TRA的精度比最先进的方法更高。

Long-Tailed Semi-Supervised Learning (LTSSL) aims to learn from class-imbalanced data where only a few samples are annotated. Existing solutions typically require substantial cost to solve complex optimization problems, or class-balanced undersampling which can result in information loss. In this paper, we present the TRAS (TRAnsfer and Share) to effectively utilize long-tailed semi-supervised data. TRAS transforms the imbalanced pseudo-label distribution of a traditional SSL model via a delicate function to enhance the supervisory signals for minority classes. It then transfers the distribution to a target model such that the minority class will receive significant attention. Interestingly, TRAS shows that more balanced pseudo-label distribution can substantially benefit minority-class training, instead of seeking to generate accurate pseudo-labels as in previous works. To simplify the approach, TRAS merges the training of the traditional SSL model and the target model into a single procedure by sharing the feature extractor, where both classifiers help improve the representation learning. According to extensive experiments, TRAS delivers much higher accuracy than state-of-the-art methods in the entire set of classes as well as minority classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源