论文标题
IR分散关系的紫外线引力散射和阳性界限
UV graviton scattering and positivity bounds from IR dispersion relations
论文作者
论文摘要
GRAVITON交换介导的散射幅度在前极限内显示IR奇异性。这阻碍了基于两次减去分散关系的阳性界限的标准应用。只有当散射振幅的紫外线极限以特定方式行为时,才能取消此类差异,这意味着振幅的紫外线和IR行为之间存在非常不平凡的联系。我们表明,可以根据整体变换表示这种关系,当$ t \ log {s} \ rightarrow 0 $时,获得分析结果。仔细地将此限制应用于分散关系,我们发现通常会消失的无限弧积分可以在重力存在下提供非平凡的贡献,这与有限的负$ t $不同。这意味着,除非以某种方式估算此贡献的大小,否则重力阳性界限不能被信任,这意味着对引力相互作用的紫外线完成的假设。我们讨论了这些发现的相关性,在QED的特定情况下耦合到重力。
Scattering amplitudes mediated by graviton exchange display IR singularities in the forward limit. This obstructs standard application of positivity bounds based on twice subtracted dispersion relations. Such divergences can be cancelled only if the UV limit of the scattering amplitude behaves in a specific way, which implies a very non-trivial connection between the UV and IR behaviors of the amplitude. We show that this relation can be expressed in terms of an integral transform, obtaining analytic results when $t \log{s}\rightarrow 0$. Carefully applying this limit to dispersion relations, we find that infinite arc integrals, which are usually taken to vanish, can give a non-trivial contribution in the presence of gravity, unlike in the case of finite negative $t$. This implies that gravitational positivity bounds cannot be trusted unless the size of this contribution is estimated in some way, which implies assumptions on the UV completion of gravitational interactions. We discuss the relevance of these findings in the particular case of QED coupled to gravity.