论文标题

SHREC 2022:使用图像和RGB-D数据在路面上的坑洼和裂纹检测

SHREC 2022: pothole and crack detection in the road pavement using images and RGB-D data

论文作者

Thompson, Elia Moscoso, Ranieri, Andrea, Biasotti, Silvia, Chicchon, Miguel, Sipiran, Ivan, Pham, Minh-Khoi, Nguyen-Ho, Thang-Long, Nguyen, Hai-Dang, Tran, Minh-Triet

论文摘要

本文介绍了提交给SHREC 2022关于坑洼的轨道的方法,并在路面路面上进行了裂纹检测。总共比较了路面语义分割的7种不同的运行,参与者和基线方法的6个。所有方法都利用深度学习技术及其性能使用相同的环境(即:单个Jupyter笔记本)进行测试。由参与者提供了由3836个语义细分图像/面具对和797 RGB-D视频片段组成的培训集,并为参与者提供了最新的深度摄像机。然后,在验证集中的496个图像/掩码对上,在测试集中的504对上,最后在8个视频剪辑上评估了该方法。结果的分析基于用于图像分割和视频剪辑定性分析的定量指标。参与和结果表明,这种情况引起了人们的极大兴趣,在这种情况下,使用RGB-D数据仍然具有挑战性。

This paper describes the methods submitted for evaluation to the SHREC 2022 track on pothole and crack detection in the road pavement. A total of 7 different runs for the semantic segmentation of the road surface are compared, 6 from the participants plus a baseline method. All methods exploit Deep Learning techniques and their performance is tested using the same environment (i.e.: a single Jupyter notebook). A training set, composed of 3836 semantic segmentation image/mask pairs and 797 RGB-D video clips collected with the latest depth cameras was made available to the participants. The methods are then evaluated on the 496 image/mask pairs in the validation set, on the 504 pairs in the test set and finally on 8 video clips. The analysis of the results is based on quantitative metrics for image segmentation and qualitative analysis of the video clips. The participation and the results show that the scenario is of great interest and that the use of RGB-D data is still challenging in this context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源