论文标题

原孔和单极浮子同源性

Protocorks and monopole Floer homology

论文作者

Ladu, Roberto

论文摘要

我们介绍并研究了一类带有边界的紧凑型4个manifolds,它们称为原始的。任何异国情调的简单连接的封闭的4个manifolds都与原始扭曲相关,此外,任何软木都由原始的软木支撑。我们证明了对扭曲前后的原始seiberg-onginter不变性的定理,以及在原始边界的浮子同源性上分裂的定理。作为推论,我们改善了Morgan和Szabó的定理,介绍了Seiberg-witten不变性具有上限的变化,该变化仅取决于数据的拓扑。此外,我们概括了这样的结果,即仅减少软木边界的浮动同源性有助于在软木扭转下变成塞伯格(Seiberg)编织的不变性剂,从而更通用的切割和粘贴操作,其中所涉及的零件是$ 1 $连接的,并且与边界相对。

We introduce and study a class of compact 4-manifolds with boundary that we call protocorks. Any exotic pair of simply connected closed 4-manifolds is related by a protocork twist, moreover, any cork is supported by a protocork. We prove a theorem on the relative Seiberg-Witten invariants of a protocork before and after twisting and a splitting theorem on the Floer homology of protocork boundaries. As a corollary we improve a theorem by Morgan and Szabó regarding the variation of Seiberg-Witten invariants with an upper bound which depends only on the topology of the data. Moreover, we generalize the result that only the reduced Floer homology of a cork boundary contributes to the variation of the Seiberg-Witten invariants under a cork twist to more general cut and paste operations where the pieces involved are $1$-connected and homeomorphic relative to the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源