论文标题

非线性随机轨迹优化,用于底部机器人的质心动量运动产生

Nonlinear Stochastic Trajectory Optimization for Centroidal Momentum Motion Generation of Legged Robots

论文作者

Gazar, Ahmad, Khadiv, Majid, Kleff, Sébastien, Del Prete, Andrea, Righetti, Ludovic

论文摘要

由于基本的非线性,混合动力和本质上不稳定的动力学,需要通过有限的接触力来稳定,因此为腿机器人生成强大的轨迹仍然是一项具有挑战性的任务。此外,由于与环境和模型不匹配的未建模接触相互作用引起的干扰会阻碍计划轨迹的质量,从而导致不安全的运动。在这项工作中,我们建议使用随机轨迹优化来生成健壮的质心动量轨迹,以说明模型动力学和触点位置上的参数不确定性上的添加性不确定性。通过强大的质心和全身轨迹优化之间的交替,我们生成了健壮的动量轨迹,同时与全身动力学保持一致。我们在四倍的机器人上进行了不同的不确定性,这表明我们的随机轨迹优化问题减少了不同步态的脚部滑倒量,同时在确定性计划上实现了更好的性能。

Generation of robust trajectories for legged robots remains a challenging task due to the underlying nonlinear, hybrid and intrinsically unstable dynamics which needs to be stabilized through limited contact forces. Furthermore, disturbances arising from unmodelled contact interactions with the environment and model mismatches can hinder the quality of the planned trajectories leading to unsafe motions. In this work, we propose to use stochastic trajectory optimization for generating robust centroidal momentum trajectories to account for additive uncertainties on the model dynamics and parametric uncertainties on contact locations. Through an alternation between the robust centroidal and whole-body trajectory optimizations, we generate robust momentum trajectories while being consistent with the whole-body dynamics. We perform an extensive set of simulations subject to different uncertainties on a quadruped robot showing that our stochastic trajectory optimization problem reduces the amount of foot slippage for different gaits while achieving better performance over deterministic planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源