论文标题
从医学图像中预测生存时间预测的半监督学习学习
Censor-aware Semi-supervised Learning for Survival Time Prediction from Medical Images
论文作者
论文摘要
医学图像的生存时间预测对于治疗计划很重要,在该计划中,准确的估计可以改善医疗保健质量。影响生存模型培训的一个问题是审查数据。当前的大多数生存预测方法都是基于可以处理审查数据的COX模型,但是它们的应用范围是有限的,因为它们输出危险功能而不是生存时间。另一方面,预测生存时间的方法通常忽略了审查数据,从而导致训练集的利用不足。在这项工作中,我们提出了一种新的培训方法,该方法使用所有审查和未经审查的数据来预测生存时间。我们建议将审查的数据视为较低限制时间的样本,并估算伪标签,以半掩盖一个审查感知的生存时间回归剂。我们评估了来自TCGA-GM和NLST数据集的病理和X射线图像的方法。我们的结果确定了两个数据集上最新的生存预测准确性。
Survival time prediction from medical images is important for treatment planning, where accurate estimations can improve healthcare quality. One issue affecting the training of survival models is censored data. Most of the current survival prediction approaches are based on Cox models that can deal with censored data, but their application scope is limited because they output a hazard function instead of a survival time. On the other hand, methods that predict survival time usually ignore censored data, resulting in an under-utilization of the training set. In this work, we propose a new training method that predicts survival time using all censored and uncensored data. We propose to treat censored data as samples with a lower-bound time to death and estimate pseudo labels to semi-supervise a censor-aware survival time regressor. We evaluate our method on pathology and x-ray images from the TCGA-GM and NLST datasets. Our results establish the state-of-the-art survival prediction accuracy on both datasets.