论文标题
$ O(n^2)$ fermionic神经网络中的通用反对称性
$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks
论文作者
论文摘要
费米文化神经网络(费梅内特)是最近提出的波函数ansatz,用于跨变异蒙特卡洛(VMC)方法来求解多电子Schrödinger方程。 Ferminet提出了置换式架构,在该体系结构上使用Slater决定因素诱导反对称性。事实证明,Ferminet具有单一决定因素具有通用近似能力,即足够代表任何反对称函数,给定足够的参数。但是,渐近计算瓶颈来自Slater的决定因素,该决定因素以$ O(n^3)$对$ n $电子进行缩放。在本文中,我们用成对的反对称结构代替Slater决定因素,该构建易于实现,并且可以将计算成本降低到$ O(n^2)$。我们正式证明,建立在置换量等架构上的成对结构可以普遍代表任何反对称功能。此外,当我们旨在代表地面波形时,可以通过连续近似值来实现这种普遍性。
Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schrödinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function given sufficient parameters. However, the asymptotic computational bottleneck comes from the Slater determinant, which scales with $O(N^3)$ for $N$ electrons. In this paper, we substitute the Slater determinant with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N^2)$. We formally prove that the pairwise construction built upon permutation-equivariant architectures can universally represent any antisymmetric function. Besides, this universality can be achieved via continuous approximators when we aim to represent ground-state wavefunctions.