论文标题

从CT图像中肝肿瘤分割的脱钩金字塔相关网络

Decoupled Pyramid Correlation Network for Liver Tumor Segmentation from CT images

论文作者

Zhang, Yao, Yang, Jiawei, Liu, Yang, Tian, Jiang, Wang, Siyun, Zhong, Cheng, Shi, Zhongchao, Zhang, Yang, He, Zhiqiang

论文摘要

目的:计算机断层扫描(CT)图像的自动肝肿瘤分割是肝异常和手术计划的干预措施的必要先决条件。但是,由于肿瘤大小和不均匀质地的差异很大,精确的肝肿瘤分割仍然具有挑战性。基于完全卷积网络(FCN)的医学图像分割的最新进展吸引了学习歧视性金字塔特征的成功。在本文中,我们提出了一个脱钩的金字塔相关网络(DPC-NET),该网络利用了注意机制,以充分利用嵌入FCN中的低水平和高级特征以嵌入了段落肝肿瘤。方法:我们首先设计一个功能强大的金字塔特征编码器(PFE),以从输入图像中提取多层次功能。然后,我们将有关空间维度(即高度,宽度,深度)和语义维度(即通道)(即通道)(即通道)的特征分解。最重要的是,我们介绍了两种类型的注意模块:空间相关(空间)和语义相关(SEMCOR)模块,以递归测量多级特征的相关性。前者在高级功能的指导下选择性地强调了低级功能的全球语义信息。后者通过低级功能的指导在高级特征中自适应增强空间细节。结果:我们在MICCAI 2017上评估了DPC-NET LITS LITS肝脏肿瘤分割(LITS)挑战数据集。骰子相似性系数(DSC)和平均对称表面距离(ASSD)用于评估。提出的方法获得的DSC为76.4%,肝肿瘤分割的ASSD为0.838 mm,表现优于最新方法。它还以96.0%的DSC和1.636 mm的肝脏分割获得了竞争结果。

Purpose: Automated liver tumor segmentation from Computed Tomography (CT) images is a necessary prerequisite in the interventions of hepatic abnormalities and surgery planning. However, accurate liver tumor segmentation remains challenging due to the large variability of tumor sizes and inhomogeneous texture. Recent advances based on Fully Convolutional Network (FCN) for medical image segmentation drew on the success of learning discriminative pyramid features. In this paper, we propose a Decoupled Pyramid Correlation Network (DPC-Net) that exploits attention mechanisms to fully leverage both low- and high-level features embedded in FCN to segment liver tumor. Methods: We first design a powerful Pyramid Feature Encoder (PFE) to extract multi-level features from input images. Then we decouple the characteristics of features concerning spatial dimension (i.e., height, width, depth) and semantic dimension (i.e., channel). On top of that, we present two types of attention modules, Spatial Correlation (SpaCor) and Semantic Correlation (SemCor) modules, to recursively measure the correlation of multi-level features. The former selectively emphasizes global semantic information in low-level features with the guidance of high-level ones. The latter adaptively enhance spatial details in high-level features with the guidance of low-level ones. Results: We evaluate the DPC-Net on MICCAI 2017 LiTS Liver Tumor Segmentation (LiTS) challenge dataset. Dice Similarity Coefficient (DSC) and Average Symmetric Surface Distance (ASSD) are employed for evaluation. The proposed method obtains a DSC of 76.4% and an ASSD of 0.838 mm for liver tumor segmentation, outperforming the state-of-the-art methods. It also achieves a competitive results with a DSC of 96.0% and an ASSD of 1.636 mm for liver segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源