论文标题

其他角色很重要!通过角色互动增强面向角色的对话摘要

Other Roles Matter! Enhancing Role-Oriented Dialogue Summarization via Role Interactions

论文作者

Lin, Haitao, Zhu, Junnan, Xiang, Lu, Zhou, Yu, Zhang, Jiajun, Zong, Chengqing

论文摘要

面向角色的对话摘要是为对话中的不同角色(例如商人和消费者)产生摘要。现有方法通过分别汇总每个角色的内容来处理此任务,因此容易忽略其他角色的信息。但是,我们认为其他角色的内容可以使摘要的质量受益,例如其他角色提到的省略信息。因此,我们提出了一种新型的角色相互作用增强了面向角色的对话摘要的方法。它采用互相注意力和解码器的自我注意交互,以互动地获取其他角色的关键信息。交叉注意的互动旨在选择其他角色的关键对话话语,而解码器自我发项的互动旨在从其他角色的摘要中获取关键信息。实验结果表明,我们提出的方法在两个面向公共角色的对话摘要数据集上大大优于强大的基线。广泛的分析表明,其他角色的内容可以帮助通过更完整的语义和正确的主题结构来产生摘要。

Role-oriented dialogue summarization is to generate summaries for different roles in the dialogue, e.g., merchants and consumers. Existing methods handle this task by summarizing each role's content separately and thus are prone to ignore the information from other roles. However, we believe that other roles' content could benefit the quality of summaries, such as the omitted information mentioned by other roles. Therefore, we propose a novel role interaction enhanced method for role-oriented dialogue summarization. It adopts cross attention and decoder self-attention interactions to interactively acquire other roles' critical information. The cross attention interaction aims to select other roles' critical dialogue utterances, while the decoder self-attention interaction aims to obtain key information from other roles' summaries. Experimental results have shown that our proposed method significantly outperforms strong baselines on two public role-oriented dialogue summarization datasets. Extensive analyses have demonstrated that other roles' content could help generate summaries with more complete semantics and correct topic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源